[image: image4.png]EUROPEAN HOLOCAUST
RESEARCH INFRASTRUCTURE

EHRI FP7-261873

[image: image4.png]
European Holocaust Research Infrastructure

Theme [INFRA-2010-1.1.4]

GA no. 261873

D19.2
Metadata Registry
P. Boon, DANS-KNAW, M. Bryant, KCL, M. Priddy, DANS-KNAW, L. Reijnhoudt, DANS-KNAW.
Start: September 2011
Due: September 2012
Actual: March 2013
Note: The official starting date of EHRI is 1 October 2010. The Grant Agreement was signed on 17 March 2011. This means a delay of 6 months which will be reflected in the submission dates of the deliverables.
[image: image5.png]EUROPEAN HOLOCAUST
RESEARCH INFRASTRUCTURE

Document Information

	Project URL
	www.ehri-project.eu

	Document URL
	[www……]

	Deliverable
	19.2 Metadata Registry

	Work Package
	19 Data Integration Infrastructure

	Lead Beneficiary

	1, NIOD-KNAW

	Relevant Milestones

	MS1

	Nature
	P

	Type of Activity

	RTD

	Dissemination level
	PU

	Contact Person
	Mike Priddy, mike.priddy@dans.knaw.nl, +31703446484

	Abstract
(for dissemination)

	This is a short description of the main metadata store, import and retrieval modules that form the Metadata Registry aspect of the Data Integration Infrastructure.
The EHRI Metadata Registry stores and facilitates the retrieval of all metadata harvested or ingested from collection holding institutes. Furthermore, it stores the thesaurus, descriptions of collection holding institutes themselves, authority files, i.e. every research object connected with the archives.
This report contains a description of the current version of the Application Programming Interface (API) for metadata retrieval, creation, updating and deleting in the registry.

	Management Summary

(required if the deliverable exceeds more than 25 pages)

	n/a

Table of Contents
41.
Introduction

2.
Main Storage Facility
4
Annotations
6
Ingesting Interfaces
6
3.
Overview
8
4.
Application Programming Interface (API)
8
RESTful Resources
9
Formats
9
Basic CRUD requests
9
Status codes
9
Authorization and Authentication
10
Low-level API specification
10
Query
10
Vertex
11
Edge
11
Index
12
High-level API specification
13
The ‘generic template’ for the RESTful API for a EHRI resource, using the placeholder <resource>
14
Content related information
15
Annotation
15
Content Management related information
15
Abstract Vertices
16
5.
Glossary & References
18

1. Introduction

The Metadata Registry stores and facilitates the retrieval of all metadata harvested or ingested from collection holding institutes. Furthermore, it stores the thesaurus, descriptions of collection holding institutes themselves, authority files, i.e. every research object connected with the archives.

Work on the registry started prior to publication of the final detailed user requirements by work package 16, therefore it will be developed and refined throughout the project to meet the requirements of metadata users. Moreover, the choice of technologies that underpin the registry will allow for the integration of functionality such as annotations and provenance data, required for the virtual research environment (VRE), which would normally be developed in separate databases or systems.
This report concentrates on the import and retrieval modules of the EHRI data integration infrastructure that forms the core of the Metadata Registry. As we encounter different metadata, schema, file formats and delivery mechanisms used by collection holding institutions (CHI), during the development of the “connectors” for metadata ingest, it is possible that modifications will be made to dataflow and main data storage systems. However, this has been anticipated and as a consequence, flexibility to allow for new forms of research objects and metadata formats is a key feature of the EHRI data integration Metadata Registry.
2. Main Storage Facility

The data model of the proposed system has been elaborated in deliverable D17.2 from work package 17. Considering the complexity of this model, the many interrelated parts and facets of further requirements and the range of possible formats (different xml schemas, ‘special purpose’ XLS, CSV), a dynamic approach to structuring the system has been taken. A typical informative system with a relational (SQL) database for main storage capacity can be classified as static – entities and relations in such a system coincide with predefined tables, columns and relations, and therefore, cannot be easily extended. However, in EHRI flexibility is key and the need to escape the restrictions of predefinition is essential. Recent developments in data storage have yielded systems that are more adequate in handling complex object clouds and their interrelations. It can store objects and relations not foreseen during the design phase of the system. This way, it will be able to accommodate future developments both in formats and in research objects. One such data storage system is Neo4J (http://www.neo4j.org/learn), a transactional property graph database.
[image: image1.png][all lasses above this line denote
[the representations of the descriptions
|of the physical units

—E&
== =

V¥ describes V¥ describes V¥ describes V¥ describes
1

ﬂ
o

1 | unitofbescription

[all classes below s line denote.
logical representations of physical units

Figure 1: domain model from WP17.2

A relational database excels at storing predictable data structures, and answering queries like average, count, maximum etc. These types of queries will not be at the core of the virtual research environment (VRE) that will be on top of this data store. Furthermore, the EHRI domain contains a lot of object types, (semi-) structured according to different standards and schemas that do not necessarily map well to each other. Instead of forcing one (new) schema on to all data, a graph database will allow all those different structures to co-exist. Graph databases store the data as nodes and edges, with properties on both.

Coming from a relational database, one can think of a node as a row, the column values are the properties and the relations between rows, expressed by foreign keys, become the edges.
[image: image6.png]SEVENTH FRAMEWORK
"PROGRAMME

[image: image7.png]external REST VRE (WP20) REST
(web client) (web client)

E—

i) internal RESTFull API

Administrative
and
management

EHRI Core/busines logic tools

low-level service layer

Graph database Search index e store for originals
Neod) Solr

The flexibility is not just on the structure of the data coming in, but also on the way one interacts with it. Using an accompanying (Solr) index will allow for fast full text searching, the graph database gives the ability to navigate through the data by traversing the edges, thus exploring the data in a more natural way.
Neo4j can be used embedded in the system or as a server. In both configurations it has full integration with the Java programming language, meaning that, from a programmer viewpoint, ‘one just talks java’.

Annotations

One of the main features of the VRE will be the ability to annotate the metadata. This has far reaching consequences for data storage. Not only does this entail a provenance system, it also requires the previous versions of every annotated metadata record to be retrievable. Harvesting the metadata from the contributing repositories usually overwrites the modified metadata, but because of the annotations there is additional complexity in the Metadata Registry to ensure all annotated descriptions won’t be overwritten.
Ingesting Interfaces

During ingest, original metadata is processed and translated to clouds of objects, stored in Neo4j. This original metadata can be seen as documents in formats like XML, xls, csv etc., whether they stem from form-based input (for example by surveyors in WP15), raw ingest (upload) or harvesting. A feature of the Metadata Registry is the ability to access all this data in its original state, for provenance or reprocessing. The form-based input will be entered directly into the graph database, harvested material will have a call-back url to the original query, only uploaded files will have to be stored internally.
It should be considered that this metadata could be versioned, in particular when an older version has annotations. This versioning is of the non-replacing kind, meaning that older versions still can be referenced and play a part in the graph database. So, versioning will be handled within the database, not on file system level.
For now, the EAD and EAG format used by ICA-AtoM for describing the metadata of collections and agents have been mapped to the implemented metadata model. This mapping of the original structure to the internally used structure can be fairly small, as not all elements of the original metadata will be part of the defined internal metadata model.
In order to be maintainable in the future, this process needs to be automated: a harvester typically does this. The harvest module will support different ways of importing the data, either by OAI-PMH or AtomPub. To facilitate the sustainability of EHRI it is necessary for a collection holding institute (CHI) to supply their data without a systems administrator being involved. Therefore an initial mapping has been supplied from EAD to the internal metadata model. Archives providing this format can easily be added. The workflow would be as follows:
· CHI registers at NIOD-KNAW,

· Applies for ‘membership’ and receives an authorization logon,

· CHI supplies a URL to be harvested by either AtomPub or OAI-PMH,

· CHI provides an EAG record or enter institutional data,

· CHI uses a format for which a mapping already exists, or provides a mapping for their format.
It would also be feasible for the CHI to convert their archival XML schema to APEx EAD via the local conversion tool
.

[image: image2.png]import level 2

Chischema
o
chischema
i
original file
thesaurus.

ehri ofoderto be |

mlp the ontol

harvest

ingest

DADS

“chemam
exed
SCHEREG |
mapping s A meada
s pojos
store
original_file pojos
original file
Valid Bucket| original file
original e
restore
original_fle

index.

Gamh @b

filesystem

search index]

Figure 3: data flow diagram depicting the import module of the Metadata Registry

3. Overview

Figure 4 shows an overview of the above-mentioned building blocks in place. The REST support (server side) block will be developed in close harmony with WP20. The REST support (client side) is under the responsibility of WP20.

Because REST-API’s of Solr and Neo4j can be accessed directly from Java code, there is no need for a formal distinction between data access layer and the rest of the core business block. Nevertheless, a division on the level of package structure is foreseen.

[image: image8.png]

Figure 4: Overview of building blocks of the DII-system.
4. Application Programming Interface (API)
Successfully integrating the Metadata Registry in an expanding environment of other systems (the WP20 portal being the most important on a short-term basis) challenges the capacity of isolating the internal working of it from its API. Stateless performance (RESTful) will greatly simplify the internal working and structure of the system.

A safe approach – at least for the beginning – is to not expose the REST-service for the entire world. That would overcomplicate things like authentication and authorization. Instead, the REST-service will be used internally or by selected “trustworthy” servers only. The ‘internal’ RESTful API is also constricted to work with JSON only.

The sever side functionality is implemented using the Java language but the clients of the server might be done using other languages (such as Scala) that are more tailored towards building web clients.

Basically the API provides for a CRUD (create, read, update and delete) interface on the major pieces of information (domain model objects) of the collection registry. We need to make sure that we have not as strict mapping, but a useful mapping and keep the API small.

RESTful Resources

The URLs for a specific object or resource should be <base-url>/<resource>/<id>

Where the URI is the part after the base URL.

Note: the non-plural (singular) form of the object name is used.

Getting more than one result. To Get a list an id is not specified, but instead the list: <base-url>/<resource>/list.

The list method also accepts <offset> and <limit> parameters to allow pagination of results.

Formats

Only support for JSON (JavaScript Object Notation) currently. Use request header to specify what action you want and not parameters or the URI.

JSON: application/json in the HTTP Accept header

Basic CRUD requests

CRUD requests (Create, Read, Update, Delete) are the building blocks for any database application. They translate to HTTP requests as follows:
Create = HTTP POST

Read = HTTP GET

Update = HTTP PUT

Delete = HTTP DELETE

Status codes

Return HTTP result codes and also add information in the result body, for indication of errors etc. Therefore, add a ‘message’ attribute with a textual plain language description of the issue.

HTTP Status Codes used (see http://en.wikipedia.org/wiki/Http_error_codes).

200 - OK

201 - Created (OK, but specific for creation)

404 - Not Found

400 - Bad Request: The incoming data was malformed or incomplete in some way

401 – Unauthorized, Authentication credentials were missing or incorrect.

403 – Forbidden (when not authorized?): Attempt to access a resource that the client does not have permission to.

500 - Internal Server Error

The specifics of “unexceptional” errors such as 400 Bad Request and 401 Unauthorized are also returned in JSON format to the client so that they can be interpreted in a meaningful way.

Authorization and Authentication

Only the high-level API uses authorization, but no authentication. You have to specify a ‘UserProfile id’ in the HTTP header but users of the internal API are trusted to tell the truth about the id. For a public API this would be unacceptable, and would need an authentication mechanism. The internal API should not be available from outside the ‘host’ that runs the neo4j service.

Low-level API specification
Supports CRUD operations for vertices, edges and their indexes. Implemented via a so-called ‘managed’ Neo4j extension (a plugin).

The RESTful interface for Neo4j is extended with functionality to do some extra work and make it simpler to retrieve the data from the Neo4j database. The same could be accomplished by several calls to the standard Neo4j API, but here they will be in a single transaction so that rollback is possible.

General information about the usage:

· Entry URL:
<neo4j service>/db/data/ext/EhriNeo4jPlugin/graphdb/

· The managed Neo4j extension (plugin) works with http POST requests.

· Index names must be unique and also a vertex index cannot have the same name as an edge index.

· Using the low-level API makes you responsible for keeping everything consistent and therefore you need to follow the rules as specified by the high-level API (and data model).

NOTE: maybe we discontinue this part of the API or place it into the unmanaged extension?

Query

simpleQuery

Finds and returns the vertices (JSON) in the index for which the field value matches (exactly) the query value.

JSON object keys

	name
	description

	index
	Index name

	field
	Filed to query on

	query
	The query string

Vertex

createIndexedVertex

JSON object keys

	name
	description

	data
	JSON data

	index
	Index name

deleteVertex

Also deletes all connected (ingoing and outgoing) edges.

JSON object keys

	name
	description

	id
	Vertex identifier

updateIndexedVertex

Replaces the stored data with the given data.

JSON object keys

	name
	description

	id
	Vertex identifier

	data
	The data

	index
	Index name

Edge

createIndexedEdge

JSON object keys

	name
	description

	outV
	Outgoing Vertex identifier

	typeLabel
	Edge type

	inV
	Ingoing Vertex identifier

	data
	The data

	index
	Index name

deleteEdge

JSON object keys

	name
	description

	id
	Edge identifier

updateIndexedEdge

JSON object keys

	name
	description

	id
	Edge identifier

	data
	The data

	index
	Index name

Index

getVertexIndex

You can test if the index exists.

JSON object keys

	name
	description

	index
	Index name

getOrCreateVertexIndex

JSON object keys

	name
	description

	index
	Index name

	parameters
	Additional parameters for configuring the index.

NOTE: maybe optional or not be required.

getEdgeIndex

You can test if the index exists.

JSON object keys

	name
	description

	index
	Index name

getOrCreateEdgeIndex

JSON object keys

	name
	description

	index
	Index name

	parameters
	NOTE: maybe optional or not be required.

High-level API specification
Supports CRUD operations for EHRI specific information. Implemented as an unmanaged neo4j extension. This allowed us to make a proper RESTful API for the EHRI collection registry objects or resources.

The public API will use at least part of this high-level internal API.

General information about the usage:

· Entry URL: <neo4j service>/ehri/

· An existing UserProfile id in the ‘Authorization’ header needs to be specified.

· At least an ‘identifier’ and an ‘isA’ type field needs to be specified. However the ‘id’ should not be specified, because that will be determined by the database system.
The type field is the same as the resource name but starts with a lowercase letter.

· Associated vertices (nodes) that are closely related are incorporated in the result, thus forming a small sub graph. For example, entities that implement the “DescribedEntity” interface will have their associated descriptions incorporated in the result, so that multiple requests are not required to fetch information naturally related to a compound object.
The ‘generic template’ for the RESTful API for a EHRI resource, using the placeholder <resource>
	URI
	Method
	Result

	/<resource>/list
	GET
	Returns a list with all <resource>s, (but only basic information, with the identifier to get all information).

NOTE: May have offset & limit, and therefore also return the total number of results in a ‘number of results’ attribute.

	/<resource>/{id}
	GET
	Returns the information for this <resource>, including identifiers of related information that can also be retrieved via the EHRI REST interface.
Status code: OK, or Not Found

	/<resource>
	POST
	Create a ‘single’ <resource>. Return the complete information including the new identifier.

The http 'location' header will contain the URL of the newly created instance.
Status code: Created.

	/<resource>/{id}
	PUT
	To check if the provided data is valid, for instance no change of the identifier.
Status code: OK, Bad Request or Not Found

	/<resource>/{id}
	DELETE
	Status code: OK, or Not Found

NOTE: annotations on every non-management resource are allowed.

When, for a specific resource, there is a deviation from the ‘generic template’ this will be specified in the resources listed below.

Content related information

Information provided by the collection holding institutions that can be annotated and the annotations.

DocumentaryUnit

A DocumentaryUnit is conceptually equivalent with the ISAD(G) unit of description. Not to be confused with the Documents Description, this denotes the logical representation of the actual physical object, of which there is only one object. It might have copies, but these will be other physical objects with their own Documentary Unit representations as well.
Documentary Units are always created within the context of either a particular Agent (the holding institution) or another Documentary Unit (the parent item). Therefore, there is no unadorned create method for documentary unit items.

	URI
	Method
	Result

	/<resource>/{id}
	POST
	Create a ‘single’ DocumentaryUnit, setting the resource specified by {id} as the parent item, inheriting the parent’s holding institution.

Status code: Created.

Agent

Although within the model broader defined, here it’s meaning is restricted to the holding institution.

	URI
	Method
	Result

	/<resource>/{id}
	POST
	Create a ‘single’ DocumentaryUnit, setting the Agent specified by {id} as the holding institution.

Status code: Created.

Property

Holds information for generic data associated with a DocumentaryUnit or Agent.

Annotation

Represents user- and system-generated content that refers to single entities, or aggregates and links multiple entities. Annotations can themselves also be annotated.

NOTE: API resource will be implemented in the next version.
Content Management related information

This is also the non-annotatable content.

UserProfile

Represents a user and their associated information within the system. NOTE: Sensitive information related to authentication is outside the scope of this system and will be implemented externally by a public-facing application.

Group

This will play an important role when permissions and authorization are fully implemented. Group’s can then be allowed to do certain things; ‘admin’ for instance will have special permissions.

Action

Only GET is supported, since actions are generated automatically by the database system to track user and administrative events.

Abstract Vertices
A simplified diagram of the model exposed by the high-level API showing vertices (box) and edges (arrows).

The ‘abstract vertices’ are used to specify commonalities:

· AccessibleEntitiy’s are: Action, Agent, Annotation, Authority, Property, DocumentaryUnit, Group, UserProfile.

· AnnotatableEntity’s are: Agent, Annotation, Authority, Property, DescribedEntity, DocumentaryUnit.

· DescribedEntity’s are: Agent, Authority, DocumentaryUnit.
[image: image3.png]el

mentioned

description description description

belongsTo

abstract vertices actioner

annotator
subject

target

describes

Figure 5: simplified diagram of the model exposed by the high-level API
5. Glossary & References

· APEx local conversion tool is a tool by the APEx project to convert XML files to the APEx EAD format. (http://www.apenet.eu/index.php?option=com_content&view=article&id=94&Itemid=150&lang=en)

· AtomPub (Atom Publishing Protocol) is a simple protocol for creating and updating web resources (http://bitworking.org/projects/atom/rfc5023.html)

· CHI (Collection Holding Institute) is the holder of the collection, and possibly also the holder of the metadata
· CSV (comma-separated values) is a file format that contains tabular data (numbers and text) in plain-text form, where records are separated by line breaks and fields are (commonly) separated by a comma or tab.
· EAD (Encoded Archival Description) is an XML standard for encoding archival descriptions.
· EAG (Encoded Archival Guide) is an XML standard for encoding metadata on archives themselves, like addresses and history.

· ICA-AtoM (International Coucil on Archives – Access to Memory) is a web-based archival description/publication software that can serve as an OAI-PMH repository and uses OAI-PMH as the main language for remote data exchange. (https://www.ica-atom.org/)
· ISAD(G) (General International Standard Archival Description) defines the elements that should be included in an archival finding aid. http://www.ica.org/10207/standards/isadg-general-international-standard-archival-description-second-edition.html
· Java is an object oriented programming language. (http://www.oracle.com/technetwork/java/)

· JSON (JavaScript Object Notation) is a text-based open standard for human-readable data interchange. (http://www.json.org)

· Neo4j is an open-source, high-performance, enterprise-grade graph database (http://neo4j.org/)
· OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is a protocol used to harvest (or collect) the metadata descriptions of the records in an archive. (http://www.openarchives.org/OAI/openarchivesprotocol.html)
· REST (Representational State Transfer) is a style of software architecture for distributed systems such as the World Wide Web. (http://rest.elkstein.org/2008/02/what-is-rest.html)
· Scala is a programming language built on top of the Java virtual machine (JVM) and maintaining strong interoperability with Java. http://www.scala-lang.org
· SQL (Structured Query Language) is a special-purpose programming language designed for managing and accessing data held in a relational database management systems (RDBMS)
· Solr is an open source enterprise search platform, capable of full-text search, faceted search, and geospatial search (http://lucene.apache.org/solr/)

· URL (uniform resource locator) is a specific character string that constitutes a reference to an Internet resource. (http://www.w3.org/Addressing/URL/url-spec.txt)
· URI (uniform resource identifier) is a specific character string used to identify a name or a resource. It is either a URL or a URN (uniform resource name), or both. (http://tools.ietf.org/html/rfc3986)
· vertex is a synonym for a node within a graph.
· XLS is the file extension (.xls) used for Microsoft’s proprietary binary file format called Excel Binary File Format for files created from their spreadsheet software Excel (until 2007 version).
· XML (Extensible Mark-up Language) is a mark-up language that defines a set of rules for encoding documents in a format that is both human-readable and machine-readable.
Figure � SEQ Figure * ARABIC �2�: http://www.neo4j.org/learn/nosql#rdbms on the left a relational database with three tables, on the right the same data, but now shown as a graph, emphasizing the relations between the nodes over the resemblance of all A-records

� Local conversion tool is a tool created by the APEx project to convert XML files to the APEx EAD format.

WP19.2 Metadata Registry
Page 2

